Assessing Synthetic Accessibility of Chemical Compounds Using Machine Learning Methods
نویسندگان
چکیده
With de novo rational drug design, scientists can rapidly generate a very large number of potentially biologically active probes. However, many of them may be synthetically infeasible and, therefore, of limited value to drug developers. On the other hand, most of the tools for synthetic accessibility evaluation are very slow and can process only a few molecules per minute. In this study, we present two approaches to quickly predict the synthetic accessibility of chemical compounds by utilizing support vector machines operating on molecular descriptors. The first approach, RSsvm, is designed to identify the compounds that can be synthesized using a specific set of reactions and starting materials and builds its model by training on the compounds identified as synthetically accessible or not by retrosynthetic analysis. The second approach, DRsvm, is designed to provide a more general assessment of synthetic accessibility that is not tied to any set of reactions or starting materials. The training set compounds for this approach are selected from a diverse library based on the number of other similar compounds within the same library. Both approaches have been shown to perform very well in their corresponding areas of applicability with the RSsvm achieving a receiver operator characteristic score of 0.952 in cross-validation experiments and the DRsvm achieving a score of 0.888 on an independent set of compounds. Our implementations can successfully process thousands of compounds per minute.
منابع مشابه
Modeling of Chloride Ion Separation by Nanofiltration Using Machine Learning Techniques
In this work, several machine learning techniques are presented for nanofiltration modeling. According to the results, specific errors are defined. The rejection due to Nanofiltration increases with pressure but decreases with increasing the concentration of chloride ion. Methods of machine learning represent the rejection of nanofiltration as a function of concentration, pH, pressure and also ...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملClassifying 'Drug-likeness' with Kernel-Based Learning Methods
In this article we report about a successful application of modern machine learning technology, namely Support Vector Machines, to the problem of assessing the 'drug-likeness' of a chemical from a given set of descriptors of the substance. We were able to drastically improve the recent result by Byvatov et al. (2003) on this task and achieved an error rate of about 7% on unseen compounds using ...
متن کاملThermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning
Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...
متن کاملIn silico generation of novel, drug-like chemical matter using the LSTM neural network
The exploration of novel chemical spaces is one of the most important tasks of cheminformatics when supporting the drug discovery process. Properly designed and trained deep neural networks can provide a viable alternative to bruteforce de novo approaches or various other machine-learning techniques for generating novel drug-like molecules. In this article we present a method to generate molecu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chemical information and modeling
دوره 50 6 شماره
صفحات -
تاریخ انتشار 2010